Chronic Over-Expression of Heat Shock Protein 27 Attenuates Atherogenesis and Enhances Plaque Remodeling: A Combined Histological and Mechanical Assessment of Aortic Lesions
نویسندگان
چکیده
AIMS Expression of Heat Shock Protein-27 (HSP27) is reduced in human coronary atherosclerosis. Over-expression of HSP27 is protective against the early formation of lesions in atherosclerosis-prone apoE(-/-) mice (apoE(-/-)HSP27(o/e)) - however, only in females. We now seek to determine if chronic HSP27 over-expression is protective in a model of advanced atherosclerosis in both male and female apoE(-/-) mice. METHODS AND RESULTS After 12 weeks on a high fat diet, serum HSP27 levels rose more than 16-fold in male and female apoE(-/-)HSP27(o/e) mice, although females had higher levels than males. Relative to apoE(-/-) mice, female apoE(-/-)HSP27(o/e) mice showed reductions in aortic lesion area of 35% for en face and 30% for cross-sectional sinus tissue sections - with the same parameters reduced by 21% and 24% in male cohorts; respectively. Aortic plaques from apoE(-/-)HSP27(o/e) mice showed almost 50% reductions in the area occupied by cholesterol clefts and free cholesterol, with fewer macrophages and reduced apoptosis but greater intimal smooth muscle cell and collagen content. The analysis of the aortic mechanical properties showed increased vessel stiffness in apoE(-/-)HSP27(o/e) mice (41% in female, 34% in male) compare to apoE(-/-) counterparts. CONCLUSIONS Chronic over-expression of HSP27 is atheroprotective in both sexes and coincides with reductions in lesion cholesterol accumulation as well as favorable plaque remodeling. These data provide new clues as to how HSP27 may improve not only the composition of atherosclerotic lesions but potentially their stability and resilience to plaque rupture.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملTemporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice.
In the study, we investigate whether the expressions of heat shock protein (hsp)60 (a potential autoantigen) and the stress-inducible form of cytoprotector hsp70 are correlated with the development of atherosclerotic lesions in the aortic tree of apolipoprotein E-deficient (apoE(-/-)) mice. The apoE(-/-) mouse model is advantageous because the stress-inducible form of hsp70 is not constitutivel...
متن کاملExtracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation
Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better ...
متن کاملHyperglycemia and antibody titres against heat shock protein 27 in traumatic brain injury patients on parenteral nutrition
Objective(s):Hyperglycemia worsens the neuronal death induced by cerebral ischemia. Previous studies demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 and 60 (HSP70 and 60) in the liver. IgG antibody titres against heat shock protein 27 (anti HSP27) were measured to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013